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ABSTRACT

Ordinary least-squares is used to estimate the accuracy of monthly averaged sea surface temperature products
in the eastern near-equatorial Pacific. Daytime multichannel sea surface temperature (MCSST ) data, nighttime
MCSST data, Climate Analysis Center (CAC) in situ temperatures, and CAC blended temperatures are all
compared to monthly averaged, equatorial, | m moored-buoy temperatures at 110°W, 124°W, and 140°W.
In addition, reduced least-squares (RLS) is used to develop regression equations between the CAC in.situ
temperature and the MCSST data. Bootstrap methods are used to estimate the RLS regression statistics. These
regression equations are used to convert the MCSST to equivalent in situ temperatures prior to combining the
two datasets with a one over distance-squared gridding algorithm. Data used in this study are from the period
January 1983 to December 1985. When data from the 1982/1983 El Nifio are excluded from analysis, the
MCSST data are not significantly different from the moored-buoy temperatures at the 5% significance level.
The CAC in situ and blended temperatures have warm biases of 0.85°C and 0.70°C when compared to the
moored-buoy temperatures. These differences are significantly different from zero at the 5% level. The bias
between the daytime MCSST data and the CAC in situ data is 0.65°C when data from 1983 are excluded. The
bias between the nighttime MCSST data and the CAC in situ data is 1.04°C. This difference is attributed to
diurnal temperature fluctuations. The blended temperature product developed in this study is 0.94°C warmer
than the moored-buoy temperature data. The shape of this blended product is similar to the CAC blend, but
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some differences exist. These differences are discussed.

1. Introduction

To produce the high quality, long-term, tropical sea
surface temperature (SST) fields needed for climate
studies, it will be necessary to supplement historical in
situ data with current and future satellite data. Barnett
et al. (1979) recognized the potential impact that re-
motely sensed, tropical SST data could have on global
climate studies. They compared the NOAA global
ocean sea surface temperature (GOSSTCOMP) prod-
uct (Brower et al. 1976) to AXBT data collected as
part of the Hawaii-to-Tahiti shuttle experiment (Patzert
et al. 1978). They found that tropical GOSSTCOMP
data were biased by 1°-4°C with respect to the AXBT
observations. As a consequence of the large bias error,
they concluded that GOSSTCOMP data were unsuit-
able for tropical climate studies.

In recent years remotely sensed SSTs have been
available from an assortment of satellite sensors. To
assess the accuracy of these different remotely sensed
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SST products, NASA /JPL sponsored three workshops
to compare satellite-derived global SST products with
in situ observations (Njoku 1985). Included in the
workshop comparisons were multichannel sea surface
temperature (MCSST) data, which are derived from
algorithms that have replaced the GOSSTCOMP al-
gorithm. The main conclusions of the workshops were
first, that MCSST data are the most accurate remotely
sensed global SST data available and second, that large
temporally and spatially varying errors exist in the
MCSST data (Bernstein and Chelton 1985). The JPL
workshops did not provide regional comparisons of
the SST products, but the work of Barnett et al. (1979)
suggests that satellite-derived, tropical SST products
should be carefully evaluated before they are used in
climate studies.

In an effort to minimize the effects of errors in the
MCSST data, the Climate Analysis Center (CAC)
blends the MCSST data and the CAC in situ analysis
by using the MCSST analysis to define the shape of
the SST field and by using a heavily smoothed in situ
analysis as the boundary conditions to the solution of
Poisson’s equation (Reynolds 1988). The CAC blended
product is designed to filter out spatial features smaller
than 6° of latitude or longitude. In the tropical Pacific,
near 150°W, the dominant feature, the equatorial cold
tongue, is approximately 6 degrees wide in the merid-
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ional direction (Fig. 1). Thus, to derive a blended

product capable of fully resolving tropical SST vari- .

ability, additional work is required.

This paper first assesses whether errors in the near-
equatorial MCSST data and CAC in situ data are con-
sistent with global error estimates derived from the JPL
workshop analysis. Four monthly averaged, 2-degree
latitude/longitude averaged, tropical Pacific, SST
products are available for evaluation. The products are,
daytime and nighttime MCSST data (Van Woert
1988), CAC in situ SST data (Reynolds 1988), and
CAC blended in situ/MCSST data (Reynolds 1988).
The time period for each dataset is January 1983 to
December 1985. Each of these four temperature prod-
ucts are compared to monthly averaged, | m moored-
buoy temperature data (Halpern 1984). The high-
quality moored-buoy temperature data are an ideal
reference dataset because they were excluded from the
preparation of both the CAC in situ analysis and the
derivation of the MCSST coeflicients. The comparisons
are made using regression analysis assuming that errors
in the moored-buoy temperatures are much smaller
than errors in the other measurements.

This paper then provides a simple alternative method
for blending MCSST and in situ data. This is done first
by deriving regression equations between the in situ
data and the MCSST data with a technique that ac-
counts for errors in both the dependent and indepen-
dent variables. These regression equations are then used
to convert the MCSST data to equivalent in situ tem-
peratures. Lastly, the data are weighted by their vari-
ance and blended with a one over distance-squared
algorithm.

2. Data
a. Moored SST data

A mooring near 0, 110°W has been providing trop-
ical Pacific current and temperature information since
1979. It has been maintained' as part of the Eastern
Pacific Ocean Climate Study (EPOCS), (NOAA 1985;
Halpern 1984). Additional moorings were deployed
near 0°, 95°W for the period July 1981 to April 1983;
0°, 124°W from April 1984 to October 1985; and 0°,
140°W starting in April 1983 and running through
August 1985. Gaps in the | m moored temperature
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FIG. 1. Eastern tropical Pacific MCSST field for June 1984. Moor-
ing locations at 110°W, 124°W and 140°W are denoted by (®).
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record exist (Fig. 2) and are mainly due to instrument
failure. Discussion here will be limited to the moorings
near 110°W, 124°W, and 140°W for the period Jan-
uary 1983 to December 1985 because these data are
coincident in space and time with the available MCSST
data.

The locations of the moorings are only nominal po-
sitions. For the period of interest the actual locations
of the moorings deviate from these positions by as
much as a degree of longitude, although mostly by not
more than a few minutes of latitude and longitude.
These variations in mooring position can produce dis-
continuities in the SST record if the moorings are
moved within a region of strong SST gradients. Large
discontinuities in temperature were not found in the
data record at times when the moorings were set and
recovered. Thus, for the monthly averaged data used
in this study, the errors associated with the small vari-
ations in mooring locations should be small.

Monthly averaged SST at the mooring locations is
of interest in this study. The raw moored temperatures
actually represent 15 minute averages from a depth of
0.8-1.0 m. Their accuracy is reported to be 0.02°C
based on precruise and postcruise calibrations (Halpern
1984). From these high-quality, 15 minute averages,
monthly averaged SSTs were computed in three ways.
First, a monthly average was formed by averaging all
of the 15 minute observations within the month.
Throughout the rest of this paper these will be referred
to as monthly averaged, moored temperatures. Second,
monthly averages were produced by averaging all of
the 15 minute SST values for the month that had a
local time between 0200 to 0300 LST. These will be
referred to as monthly averaged, moored-nighttime
temperatures. Third, monthly averages were computed
from all of the 15 minute SST values within the month
that had a local time between 1400 to 1500 LST. These
will be referred to as monthly averaged, moored-day-
time temperatures. The daytime and nighttime aver-
aging periods were chosen because they approximate
the time of day when the satellites (NOAA-7 and
NOAA-9) pass over the moorings. This was done to
minimize the effects of potentially large diurnal fluc-
tuations on the comparisons. The three, monthly av-
eraged moored temperature time series for each moor-
ing are shown in Fig. 2.

b. MCSST data

The MCSST measurements are based on radiance
measurements from the Advanced Very High Reso-
lution Radiometer (AVHRR) sensor carried aboard
the NOAA polar orbiting satellites. These radiances
are collected by ground stations and then post processed
to produce the MCSST estimates. A detailed descrip-
tion of the methodology for producing MCSST obser-
vations is given by McClain et al. (1985). Also, a brief
description of the processing is provided here.

Starting with the launch of NOAA-7 in August 1981,
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FIG. 2. (a) Three-year record of monthly averaged (a) moored, (4) daytime moored, (¢) nighttime moored, (d) daytime MCSST, (e)
nighttime MCSST, (/) CAC blend, and (g) CAC in situ temperature at 110°W. With the exception of the in situ series, which is offset from
the preceding series by 4°C, all series are offset by 2°C. (b). Same as (a) except at 124°W. (c) Same as (a) except at 140°W.

NOAA has been operating satellites equipped with a
five-channel AVHRR. The five channels correspond
to a visible (0.58-0.68 um ), reflected infrared (0.725-
1.1 um) and three emitted infrared channels (3.55-
3.93, 10.3-11.3, and 11.5-12.5 um). The spatial res-
olution of the AVHRR is 1.1 km at nadir. These 1.1
km resolution data are referred to as Local Area Cov-
erage (LAC) data. The satellite also produces subsam-
pled LAC data called Global Area Coverage (GAC)
data. GAC data are obtained from LAC data by av-
eraging four of every five samples along a scan line
from every third scan line. The resulting GAC data
have about 4 km resolution.

These five channel GAC data form the starting point
for the generation of the MCSST observations. The
first step in the MCSST algorithm is to eliminate GAC
samples contaminated by clouds and direct specular
reflection. The specular reflection test is a geometrical
test based on satellite and solar viewing angles. The
cloud screening tests fall into three classes: visible or
IR reflectance, uniformity, and channel intercompar-
isons. GAC data passing all of the tests are corrected
for atmospheric attenuation using a linear combination
of the IR channels and then are spatially averaged to
produce MCSSTs. The resulting MCSST data have an
8 km square footprint, a nominal separation of 25 km
in midocean, and a stated precision of 0.5°C when
compared against high quality drifting buoys (Strong
and McClain 1984). It is these raw data that are ar-
chived on the 7-day MCSST data tapes by the National
Environmental Satellite Data and Information Services

(NESDIS). These data form the starting point for the
analysis discussed here.

The details of the MCSST data extraction and pro-
cessing can be found in Van Woert (1988). Briefly,
the data from the region 10°S-10°N, 100°-150°W
were extracted from the 7-day MCSST tapes using in-
formation contained in the NOAA Polar Orbiter Data
Users Guide (Kidwell 1986). These data were sorted
in space and time into monthly, 2 degree latitude /lon-
gitude bins centered on even values of latitude and
longitude. For each bin, or grid node, a monthly mean
MCSST value, a monthly MCSST variance and the
number of MCSST observations used in each grid node
calculation were accumulated. Daytime and nighttime
MCSST were processed separately to avoid potential
problems resulting from differences in the daytime and
nighttime MCSST algorithms and to prevent contam-
inating the comparisons with potentially strong diurnal
variations. Monthly MCSSTs at the mooring locations
were obtained by linearly interpolating between the
two nearest equatorial grid values. During several
months it was not possible to obtain a monthly aver-
aged MCSST estimate because one or both of the ad-
joining grid nodes were undefined. These months were
disregarded from further analysis. The two monthly
averaged MCSST temperature time series at each
mooring are shown in Fig. 2.

¢. In situ data

The U.S. National Meteorological Center collects in
situ SST data in near real time and then processes these
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data to produce global maps of monthly averaged SST.
These data include all drift buoy temperatures and
routine ship observations (mostly ship injection tem-
peratures). The production of the monthly maps in-
cludes the elimination of questionable data, averaging
the data in 2-degree latitude /longitude bins, and then
applying a nonlinear median filter. These data are ad-
equate to describe the SST field between 30°S and
60°N except in the central and eastern tropical Pacific
(Reynolds 1988). The monthly averaged in situ tem-
perature time series at each mooring are shown in
Fig. 2.
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d. MCSST/in situ biended SST data

The MCSST and in situ gridded products are
blended using a sophisticated algorithm that involves
the solution of Poisson’s equation on a sphere (Reyn-
olds 1988). By including the MCSST analysis, this
blended product overcomes the limitation of poor in
situ data coverage in the tropical Pacific while retaining
the structure of the in situ SST field in areas where in
situ SST data are plentiful. For completeness, the
blended product will be compared against the moored
SST data, but it will not be compared against either
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FI1G. 3. Scatter plots and regression lines for (a) daytime MCSST data versus daytime moored temperature, (b) nighttime MCSST data
versus nighttime moored temperature, (c) CAC in situ versus moored temperature and (d) CAC blend versus moored temperature. The
solid line represents the regression model OTHER_SST = goMOOR_SST + b,. The dashed line is the perfect-fit line. The data enclosed
in the box are data from 1983, the period contaminated by El Chichén aerosols.
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the in situ or MCSST data because the blended data
are not statistically independent of the in situ and
MCSST data. The monthly averaged blended temper-
ature time series at each mooring is shown in Fig. 2.

3. Method

a. Ordinary least-squares

Residuals about regression lines between the four
SST data products and the moored-buoy temperature
data are used to estimate the errors in the daytime
MCSST, nighttime MCSST, in situ SST, and blended
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SST products. Scatter plots of the data and the ordi-
nary-least-squares (OLS) lines are shown in Figs. 3
and 4. The independent variable (abscissa) refers to
one of the three monthly averaged moored datasets
(MOOR_SST). The dependent variable (ordinate)
refers to either the daytime MCSST data, the nighttime
MCSST data, the in situ data, or the blended data
(OTHER_SST). The specific data pairings are noted
in the axis labels. :

Two models were fit to the data. The first model is

OTHER_SST = ggMOOR_SST + b,, (1)
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F1G. 4. Same as Fig. 3 except that the model plotted is OTHER_SST = ¢, MOOR_SST + b,.
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TABLE 1. Regression statistics for the ordinary least-squares lines shown in Figs. 3 and 4.
Bias model Linear model
Abscissa Ordinate bo 95% '3 x? b, 95% a 95% o X2 F R N
Daytime moored Daytime —0.09 +0.12 0.49 5452 131 =+1.44 094 006 047 51.24 359 097 59
temp. MCSST
Nighttime moored  Nighttime 0.08 +0.13 0.52 5856 233 +1.74 091 +0.07 049 52.28 634 096 56
temp. MCSST
Moored temp. In situ 0.84 +0.27 1.06 5331 7.60 +271 072 =*0.11 0.89 3703 2461 086 59
temp.
Moored temp. Blended 0.70 +0.17 068 4138 512 =*1.69 082 +0.07 0.56 2827 2598 095 59
temp.

where qo = 1. Hereafter, this model is referred to as
the bias model. The solid lines in Fig. 3 represent this
model and the intercept with the ordinate axis (bg)
represents the temperature bias between the two da-
tasets.

The second model relating the dependent datasets
to the moored temperature data is

OTHER_SST = aMOOR_SST + b,.  (2)

Hereafter, this model is referred to as the linear model.
The solid lines in Fig. 4 represent this model.”

For a least-squares fit to be useful it should provide
estimates of the parameters, the uncertainty in the pa-
rameters, and an estimate of the goodness-of-fit (Press
et al. 1986). In addition, in this study an estimate of
the data uncertainty also is desired. The remainder of
this section outlines how these quantities were esti-
mated for the two models described above.

The coefficients by, b,, and a, are estimated by min-
imizing chi-square, X2, which is defined as

sz

_s (OTHER_SST (i) — &xMOOR_SST (i) — by)?
2

g

k=0,1. (3)

Here N is the number of data pairs and ¢ is the standard
deviation of an individual measurement. Estimates of
o are obtained by assuming ¢ is a constant, minimizing
x?2, and then solving

N
o2 = 3 (OTHER_SST(})

i=1

— atMOOR_SST (i) — 5)?/N k=0,1 (4)
for o.

Here, X2 and o cannot be independently estimated
because they are related to each other through Eq. (3).
Global temperature statistics are expected to differ from
the tropical values because of differences in the ocean
structure, differences in the intervening atmosphere,
and data sparsity. Therefore, global estimates will be
used as the best available independent estimates of o
in the estimation of X2. The global error estimates used
are 0.5°C for the MCSST data (McClain et al. 1985),
1.1°C for the in situ data (Reynolds 1988), and 0.8°C
for the blended data (Reynolds 1988). The X2 values
are listed in Tables 1 and 2.

The validity of the OLS method rests on the as-
sumption that errors in the independent variable are
much smaller than the errors in the dependent variable
(E dependent < F independent). This assumption is
equivalent to assuming that 1 m moored temperatures
are known perfectly and the other SST observations
are in error; the assumption is probably valid. Each
individual 15 min moored temperature measurement
has a reported error of 0.02°C (Halpern 1984) and
monthly averaged moored temperature errors should
be even smaller. These are smaller than the global error
estimates for all SST products listed above, and as will
be shown later, they are also smaller than the errors in

TABLE 2. Same as Table | except data from the El Nino period have been excluded from the regression analysis.

Bias model Linear model

Abscissa Ordinate bo 95% I X2 b, 95% a 95% o x? F R N

Daytime moored Daytime —0.01 +0.11 041 3245 -198 +1.76 1.08 +0.07 040 2940 478 097 49
temp. MCSST

Nighttime moored  Nighttime 0.08 +0.12 0.44 3790 0.16 +2.00 1.00 =+0.08 045 3788 001 096 49
temp. MCSST

Moored temp. In situ 0.85 +0.26 0.92 40.32 526 =394 0.82 +0.16 0.88 36.56 473 0.82 49

temp.
Moored temp. Blended 0.70 x0.15 0.55 2261 288 +240 091 +0.10 0.54 21.17 3.12 093 49

temp.
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FIG. 5. Scatter plots and regression lines (a) CAC in situ temperature
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the RLS line. The dashed line is the perfect-fit line.

the tropical SST products. Thus, it should be possible
to estimate by, b;, and a, using OLS methods.

The minimum X? is an estimate of the goodness-of-
fit. In the limit of large &, a chi-squared distribution
approaches a normal distribution with a mean equal
to the number of degrees of freedom, v = N — 3, and
a standard deviation equal to V2v. A fit is usually
deemed a good fit if the computed X2 is approximately
equal to the mean of a x? distribution with » degrees
of freedom (Press et al. 1986).
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Having determined the bias and linear regression
statistics, an F-test is used to determine whether the
linear model is significantly better than the bias model.
For approximately 60 degrees of freedom the tabulated
5% level of significance, Fy s, is 4.00 (e.g., Bevington
1969). If the computed F exceeds Fy s, a; is probably
nonzero and the linear term should be included; by,
b, a;, x?, and F are all listed in Tables 1 and 2.

b. Reduced least-squares

Until the recent operational implementation of the
MCSST algorithm, in situ data were the only source
of global SST data. It is well known that differences
exist between MCSST data and in situ data (Bernstein
and Chelton 1985). Further evidence of these differ-
ences is provided in this paper. To merge the MCSST
data with the historical in situ data in a rational way,
some form of calibration between the two datasets must
be established. To achieve this, regression equations
between the MCSST and in situ temperature were de-
veloped. Both bias and linear models, similar to Eqgs.
(1) and (2), were fit between the MCSST and in situ
data.

Ordinary least-squares is valid only when the errors
in the independent variable are much smaller than the
errors in the dependent variable. It will be shown later
that the assumption E dependent € E independent is
violated for tropical MCSST and in situ data. However,
regression techniques have been developed to handle
situations where both dependent and independent data
have significant errors. These methods are referred to
as reduced least-squares algorithms (RLS) (York 1966;
O’Neill et al. 1969; Barker and Diana 1974). For com-
parison purposes both the RLS and the OLS lines are
shown in Fig. 5.

¢. Bootstrap statistics

Asymptotic expressions do not exist for estimating
RLS parameter uncertainties. To estimate the RLS
coefficient uncertainties a Monte-Carlo technique
called bootstrapping (Efron 1979a, 1979b) was utilized.

Koblinsky was the first to apply bootstrap techniques
to oceanographic data analysis (Koblinsky et al. 1984).
The chief advantage of the bootstrap technique is that
the results are usually insensitive to the data distribu-
tion. This makes it particularly attractive for estimating
statistics of small samples that have poorly known data
distributions.

The bootstrap method is relatively straightforward
to implement, but it can put heavy demands on com-
puter resources if the problem is complex. The details
of the bootstrap method can be found in Efron (1979a,
1979b) and the application of the technique to least
squares problems is provided by Freedman and Peters
(1983). The method briefly stated is to define the pa-
rameters to bootstrap (in this case by, b;, and a,). Select
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at random, N data values with replacement from the
N original data points and compute the statistics. Re-
peat the process many times; for this work 1000 boot-
strap samples were analyzed. The best estimate of each
parameter is the median of the 1000 bootstrap esti-
mates. The upper and lower 95% confidence limits were
obtained from the upper and lower 2.5 percentile of
the distribution. These were easily estimated by sorting
the 1000 estimates and selecting the 25th, 500th, and
975th elements.

d. Blending process

Monthly blended MCSST /in situ maps for 1984 and
1985 were constructed for this study with a two-step
blending algorithm. First, the gridded daytime and
nighttime MCSST data were converted to equivalent
in situ data using the bias adjustments given in Table
3b. Although linear regression equations were com-
puted, they were not used in the blending process for
reasons discussed in section 5f. Second, these calibrated
MCSST maps (Figs. 6a, 6b, 7a, and 7b) along with the
in situ maps (Figs. 6¢ and 7¢) are combined in different
ways depending on the data availability at each grid
node. At grid nodes containing both MCSST and in
situ data, blended grid node estimates were obtained
by weighting the gridded SST estimates by their vari-
ance and then forming the average. For grid nodes that
contain neither MCSST nor in situ data (this occurred
rarely) an interpolated value was produced by aver-
aging nearby MCSST and in situ gridded data that were
weighted by their variance and one over distance-
squared. Hereafter, this product is referred to as the
least-squares blended product (LSQRBP).

4. Results
a. Bias model

Figure 3 displays the bias model regression lines be-
tween the moored temperature data and the other SST
data. Table 1 lists the regression coefficients and sta-
tistics.

The daytime MCSST data relative to the daytime
moored data, and the nighttime MCSST data relative
to the nighttime moored data have small biases
(—0.09°C, +0.08°C) that are not significantly different
from zero at the 5% significance level. In addition, the
correlation coefficients, R, exceed 0.95 indicating that
the structure of the MCSST data is similar to the struc-
ture of the moored temperature data. The standard
errors, o, for both regressions are ~0.5°C.

In contrast, the in situ data and the CAC blended
data are biased warm by 0.84°C and 0.70°C, respec-
tively, relative to the moored temperature data. These
biases are significantly different from zero at the 5%
significance level.
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b. Linear model

Figure 4 dispiays the linear regression lines and Table
1 lists the regression coeflicients and statistics.

For the daytime MCSST data versus the moored
temperature comparison, the slope and intercept are
0.94 and 1.31, respectively. These are not significantly
different from 1.0 and 0.0, respectively, at the 5% sig-
nificance level.

The nighttime MCSST data versus the moored tem-
perature regression equation has an intercept that is
significantly different from 0.0 and a slope that is sig-
nificantly less than 1.0 at the 5% significance level. It
should be noted, however, that the nighttime. results
are very similar to the daytime results (See also section
4¢). Thus, the statistical results for the nighttime
regression may not be valid.

The remaining two regressions, in situ temperature
and blended temperature versus moored temperature,
both have positive intercepts that are significantly dif-
ferent from 0.0 and slopes that are significantly less
than 1.0 at the 5% significance level.

These lines represent clockwise rotations of the unit
slope lines in Fig. 3. The rotated lines indicate that at
warmer temperatures (near 30°C) the SST products
are cooler than the moored temperatures. At cooler
temperatures (near 20°C) the SST products are warmer
than the moored temperature. The linear model pro-
duces a substantial reduction in the standard error
when compared to the bias model.

¢. Bootstrap parameter uncertainties

It was unnecessary to bootstrap the OLS regression
equations; however, bootstrapping was applied to the
OLS regressions to validate the bootstrap method.
Some small, insignificant differences were noted.

Specifically, the results (not shown ) of bootstrapping
the bias, by, indicate that the median bootstrap values
differ from the original data estimates by several hun-
dredths of a degree Celsius. This difference is thought
to be an artifact of the bootstrap technique (Efron
1979b). The spread between the bootstrapped 5% sig-
nificance limits, however, are identical to the asymp-
totic limits (Table 1) obtained when the data errors
are assumed to be normally distributed.

Here, b, and a, in the linear model were also boot-
strapped. The median bootstrap values of the inter-
cepts, by, are slightly smaller than the original estimates
of the intercept. The slopes, a,, are either unchanged
or just slightly larger (closer to 1.0) than the original
slopes. The bootstrap confidence limits are consistent
with the asymptotic limits (Table 1) obtained when
the data are assumed to be normally distributed.

All of the differences between the bootstrap tech-
nique and asymptotic limits are small, which provides
some justification for using bootstrap techniques to es-
timate uncertainties in the RLS coefficients.
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d. Goodness-of-fit

Chi-squared values are listed in Table 1. The night-
time bias model regression has the largest X2 (58.6)
and the blended bias model has the smallest X2 (41.4).
All are close to N (~60), which indicates that all are
reasonably good fits. As expected, the linear model x 2
values are slightly smaller than the bias model values.

e. Significance of linear model

An F-test was used to determine whether the linear
model is significantly better than the bias model. For
approximately 60 degrees of freedom the tabulated F-
value 1s 4.00 (e.g., Bevington 1969). The computed F-
values for the regressions are provided in Table 1. The
F-values for the daytime and nighttime regressions are
close to 4.00; thus, the linear terms are probably un-
important. The F-values for the in situ and blended
regressions, however, are much larger than 4.0. In these
cases the linear terms definitely are important, thus,
indicating a temperature dependent bias between the
CAC in situ/blended products and the moored-buoy
temperature.

f. Least squares excluding data from 1983

A common misuse of the OLS technique is to apply
the method without careful consideration of the data
distribution. Outliers, or more appropriately points
with a very low probability of occurrence based on a
Gaussian error distribution, can corrupt OLS solutions
because the maximum likelihood estimator is willing
to distort the model parameters to bring them, mis-
takenly, into line with the outlying data. To be assured
that the results are not sensitive to the values of indi-
vidual data points it is necessary to eliminate outliers
and reanalyze the data. If the results remain unchanged
usually 1t can be assumed that the results are insensitive
to the outlying values.

It is well documented that MCSST data from 1982
and early 1983 were strongly affected by aerosols pro-
duced during the eruption of the Mexican volcano, El
Chichon (Strong 1986). Radiometric temperatures af-
fected by aerosols normally appear anomalously cool
with respect to the true temperature. Apparent outlying
data collected during this period are enclosed in boxes
in Figs. 3 and 4. The regression statistics excluding
these data (and several other values that could not be
boxed) are listed in Table 2.

Deletion of the anomalously cool MCSST data from
1983 produced a small warm bias in all temperature
products relative to the moored-buoy data. The linear
model produced smaller intercepts and slopes closer
to 1.0 when data from 1983 were excluded.

Exclusion of the data from 1983 dramatically re-
duced all of the F-values except the value for the day-
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time regression, which increased slightly. In all cases
the F-values are close to 4.00; thus, the linear terms
are probably unnecessary in any of the regressions
against the moored-buoy data.

g. Regression of MCSST data against in situ data

The results of the RLS bias model regression ( Table
4a) indicate that the daytime MCSST data are ap-
proximately 0.8°C cooler than the in situ data and the
nighttime MCSST data are 1.1°C cooler than in situ
temperatures. Both coefficients are significantly differ-
ent from zero at the 5% significance level. The daytime
and nighttime monthly averaged MCSST data also are
significantly different from each other at the 5% sig-
nificance level. This result is independent of whether
the data are assumed to be statistically paired or un-
paired.

The RLS slope and intercept for the linear model
relating the daytime MCSST and in situ temperature
are 0.86°C and 4.11°C. The slope is significantly dif-
ferent from 1.0 and the bias is significantly different
from 0.0, both at the 5% significance level. The F-value
indicates that the linear term is significant. The RLS
slope and intercept between the nighttime MCSST data
and the in situ temperature are 0.9°C and 3.32°C. The
slope is not significantly different from 1.0 and the in-
tercept is not significantly different from 0.0, both at
the 5% significance level. The F-value indicates that
the linear term is unnecessary.

Regressions were also run between the MCSST data
and in situ data excluding data from 1983. Exclusion
of these data altered the regression coeflicients.and sta-
tistics (Table 4b), but the regression lines (not shown)
looked similar to those in Fig. 5 and the results remain
unchanged.

h. Blending MCSST and in situ

Figures 6 and 7 show the daytime MCSST, nighttime
MCSST, CAC in situ temperature, CAC blended tem-
perature, LSQRBP temperature, and the LSQRBP-
CAC blended temperature difference for November
1984 and March 1985. November 1984 was chosen
for discussion because it is a month when the equatorial
cold tongue was well developed. March 1985 was cho-
sen because it is a month when the cold tongue was
absent.

As noted by the location of the 25°C isotherm, the
CAC blended product (Fig. 6d) looks similar to the in
situ map (Fig. 6¢) and the LSQRBP (Fig. 6¢) closely
resembles the MCSST maps (Figs. 6a and 6b). Overall,
however, the differences between the two blended
products (Fig. 6f) do not exceed £0.5°C.

The March 1988 maps present a slightly different
situation. This time the CAC blend (Fig. 7d) looks
very similar to the nighttime MCSST field (Fig. 7b).
The shape of the LSQRBP field (Fig. 7e), however,
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more closely resembles the shape of the daytime
MCSST map (Fig. 7a). Neither resembiles the in situ
analysis. The difference field (Fig. 7f) indicates that
the LSQRBP is warmer than the CAC blend by about
1°C except along the equator near 105 degrees W.
There the difference exceeds 1.5°C. This 1.5°C anom-
aly occurs because the CAC blend appears to be dom-
inated by the nighttime MCSST, which does not in-
clude the warm anomaly seen near 105°W in the day-
time MCSST product.

The LSQRBP data were compared to the moored-
buoy data. A warm bias of (0.74°C exists between the
LSQRBP and the moored-buoy temperatures, which
is significantly different from 0.0 at the 5% significance
level. The standard error is 0.57°C, the correlation
coefficient is 0.95°, and the X2 is 25.6. The linear term
is deemed unnecessary based on the results of an F-
test when data from 1983 were excluded from the
analysis.

5. Discussion
a. MCSST errors

The MCSST algorithm is tuned against a global set
of drifting buoys that report temperature from a nom-
inal depth of 1 m (McClain et al. 1985). The MCSST
algorithm, therefore, is not designed to provide esti-
mates of the skin temperature. Rather, the MCSST
algorithm uses observed radiometric temperatures and
globally derived MCSST regression coeflicients to pro-
duce temperatures extrapolated to 1 m.

Several studies have used drift-buoy data to verify
the MCSST algorithms, ( Bernstein 1982; McClain et
al. 1985; Strong and McClain 1984), but Strong and
McClain provide the only comparison between MCSST
data and moored-buoy temperatures. They found that
MCSST data had a cool bias with respect to the
moored-buoy temperatures (moored-buoy tempera-
ture-MCSST) of 0.47°C and a root mean square dif-
ference (RMSD) of 1.05°C. They attributed the large
RMSD to the large SST gradients characteristic of
coastal regions where most of the moored buoys are
anchored and the lack of space/time coincidence be-
tween the data. However, other factors such as diurnal
fluctuations, caused by the inclusion of both nighttime
and daytime MCSST data in the comparison, and the
failure to remove the 0.47°C bias prior to computing
the RMSD could contribute to the large observed
RMSD.

To minimize these problems they carefully rederived
the MCSST coeflicients using a global set of drifting
buoys. The rederived MCSST data were then compared
against an independent set of drift-buoy data. They
were not recompared to moored-buoy data, but both
the nighttime and daytime comparisons against the
drift-buoy temperatures produced biases of approxi-
mately —0.02°C and RMSDs of ~0.5°C. These global
statistics are consistent with the tropical MCSST verses
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moored-buoy temperature statistics presented in this
study (Tables 1-2).

Nonstationary events such as the launch of new sat-
ellites also can lead to errors in the MCSST data.
Reynolds et al. (1989) found daytime MCSST errors
0f 0.5-1.0°C in western tropical Pacific MCSST data.
These errors occurred coincident with the launch of
NOAA-11 in November 1988 and were probably due
to an error in the implementation of the nonlinearity
correction to the AVHRR calibration algorithm. Feb-
ruary 1985 represented a transition from NOAA-7
MCSSTs to NOAA-9 MCSSTs. To investigate the ef-
fects of the satellite changeover on the tropical SST,
each monthly averaged daytime MCSST map was ..
zonally averaged and a contour plot of zonally averaged
temperature versus latitude and time was produced
(not shown). This map was smooth and continuous
through the changeover from NOAA-7 to NOAA-9,
thus a sensor-dependent error during the period, if
present, was small.

b. In situ temperature errors

Historically, global SST maps have been based pri-
marily on ship injection temperatures. Previous studies
have shown that the injection temperatures at 5-10 m
are biased warm with respect to high-quality surface
temperatures. Saur (1963) found ship injection tem-
peratures to be 0.6°C warmer than bucket tempera-
tures. Barnett (1984 ) also compared bucket and injec-
tion temperatures and found a warm bias of 0.4°C.
Tabatta (1978) reported a bias of 0.2°C between in-
jection temperatures and temperatures at NOAA buoy
stations. In this study the CAC in situ analysis was also
found to be warmer than the moored-buoy tempera-
tures, but this time it is warmer by 0.84°C (Table 1).

Three reasons have been suggested to explain this
discrepancy. First, injection temperatures are usually
measured in the ships engine room where heat from
the ships engines can warm the water prior to the tem-
perature reading. Second, bucket temperatures are
likely to read anomalously cool due to evaporative heat
losses if the bucket is not well insulated (Folland et al.
1984). Three, during periods of low wind speed, cool
air, and warm surface water, evaporative cooling at the
sea surface can produce differences between skin tem-
perature and bulk temperature of 1°C or more (Kat-
saros 1980). Often, all three factors can contribute to
the observed discrepancy.

One¢ additional reason that has not been mentioned,
is that improper sampling of near-equatorial in situ,
blended, and MCSST temperatures can lead to an ap-
parent bias when compared to the equatorial moored
data. The eastern tropical Pacific is characterized by a
strong north-south temperature gradient ( Wyrtki and
Kilonski 1984). The equatorial data products are
formed from 2 degree spatial averages about the equa-
tor. Depending on the locations of the observations
within the 2 degree box, the spatial average of the data



AUGUST 1990

products can be as much as 0.5°C warmer than the
temperature exactly on the equator. This is particularly
true of the in situ product, which on occasion may rely
on a single observation within the 2 degree box for the
equatorial grid estimate.

¢. Discussion of MCSST versus in situ regression

Bernstein and Chelton (1985) reported on the results
of the JPL workshop SST comparisons. They found
the in situ data to be 0.3°-0.5°C warmer than the
MCSST product. This is smaller than the tropical biases
(Table 3), which are 0.8°~1.1°C. Their reported stan-
dard errors also were slightly smaller, 0.5°-0.8°C, ver-
sus standard errors of 0.9°C for the RLS results de-
scribed in this paper. The large differences found in
this study between the equatorial CAC in situ temper-
atures and the MCSST data are probably due to the
use of sparse, poor-quality, in situ observations to form
spatial averages in a region of strong horizontal tem-
perature gradient as discussed above.

Chelton (1985) and Bernstein and Chelton (1985)
also used a three-way-error partitioning technique to
estimate the RMSDs for three satellite-derived SST
products. The method is similar to the more commonly
used two-way-error partition method (e.g., Johnson et
al. 1988). Essential to both methods is the assumption
that the errors in each SST product are uncorrelated.
While it is certainly true that the instrument noise of
each sensor is independent, geophysical effects such as
incomplete cloud filtering, SST dependent biases or
diurnal fluctuations can render the method inappro-
priate. Despite these limitations Bernstein and Chelton
found global RMSDs of 0.5°-0.7°C, which are con-
sistent with their previous results.

Both two-way-error and three-way-error partitioning
methods were applied to the data in Fig. 2. In this
study, neither the two-way nor the three-way tech-
niques produced acceptable results. For most choices
of two or three datasets the RMSDs were unreasonably
small and in some cases the RMSDs were actually neg-
ative. This is impossible unless one or more of the ne-
glected cross correlation terms were important in the
analysis. It has been shown that temperature-dependent
biases may exist in the data. These can lead to nonzero
correlations that can corrupt the two-way and three-
way error estimates.

d. Diurnal variations

A second potential source of error in the two-way
and three-way methods is incompletely resolved diur-
nal variability. Diurnal differences in the bulk tem-
perature occur in the upper 10 m during periods of
light winds and limited cloud cover. Pullen (1985)
compared continuous underway temperatures from 5
m depth with hourly bucket temperatures in the trop-
ical Pacific. On some days diurnal temperature differ-
ences of 1°-2°C were found. Furthermore, the mini-

TABLE 3. (a) Bootstrap estimates of regression statistics for the RLS bias and linear regression lines. The linear regression lines are shown in Fig. 5,

(b) bootstrap estimates of regression statistics for the RLS regression lines excluding data from 1983.
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Linear model

Bias model

bo +95% 7 x? -95% b, +95% —95% a +95% T x2

Ordinate —95%

Abscissa

a

0.79 0.97 0.92 88.32 2.29 4.11 6.08 0.79 0.86 0.94 0.85 79.30 10.21 0.90 107

0.63

In situ
temp.
In situ

MCSST

Daytime
Nighttime

1.11 1.31 0.91 74.18 0.78 3.32 6.17 0.79 0.91 1.01 0.87 70.74 2.77 0.86 93

0.94
temp.

MCSST

b

0.65 0.86 0.90 56.98 1.85 4.95 7.81 0.71 0.82 0.95 0.83 50.21 7.63 0.85 72

0.44

In situ
temp.
In situ

MCSST
Nighttime

Daytime

1.04 1.27 0.94 59.33 —0.04 3.79 7.46 0.73 0.88 1.04 0.90 56.08 2.33 0.81 72

0.83
temp.

MCSST
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mum and maximum temperatures occurred at roughly
the same times as the two daily satellite overpasses.
There is some evidence of diurnal variability in the
MCSST data (Table 3b). The daytime MCSST data
are 0.65°C cooler than the in situ data. At night the
MCSST data are 1.04°C cooler than the in situ data.
Since the same in situ data were used in both regres-
sions, the 0.4°C difference observed between daytime
and nighttime biases must be attributed to day/night
differences in the MCSST data. Reynolds (1988) also
noted day/night MCSST differences of 0.0°~0.5°C in
the eastern tropical Pacific. These differences are now
routinely monitored at the CAC (Reynolds et al. 1988).

e. Blending MCSST and in situ data: bias model

In this study an alternative to the CAC blended
product is presented. Its main virtues are that it is easy
to prepare because it does not require the solution of
a partial differential equation and it provides better
spatial resolution. Its main limitation is that it is based
on regionally derived regression equations that may
vary in space and time.

Overall, the difference, LSQRBP-CAC blend is
larger in March 1985 than it is in November 1984 (Figs.
6f and 7f). One possible reason for the large difference
observed during March is that during that month the
equatorial cool tongue was not present. The cessation
of the equatorial upwelling along with the strong solar
heating (Gautier 1988; Gautier et al. 1986) can produce
a strong vertical temperature gradient in the surface
layer. During these periods the regression equations
(Table 3) may not adequately relate the MCSST data
extrapolated to 1 m and in situ temperature measured
10-15 m.

This does not imply that either the MCSST data or
the in situ data are necessarily in error. Rather, it sug-
gests that the assumed, time-invariant regression equa-
tions do not adequately characterize a possibly time-
dependent relationship between the two datasets. This
highlights the fundamental problem with all algorithms
that blend in situ data and MCSSTs, that they attempt
to combine two temperature measurements that are
difficult to combine because they are related by com-
plex physical processes. However, if the two measure-
ments must be combined, the blending algorithm must
account for temporal (and spatial) differences in the
relationship between the MCSST field and the in situ
field. The LSQRBP cannot attempt to model temporal
differences, but the CAC blending technique can
account for temporal differences at least in an ad
hoc way.

In addition to potential time-dependent differences
between the two blends, there is also some indication
of spatial differences. For example, the November 1984
LSQRBP is cooler than the CAC blend on the equator,
but the temperature difference reverses at about 5°N
and 5°S (Fig. 6f).

Three reasons are offered to explain this difference.
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First, the difference could be the result of using equa-
torially derived regression equations in regions where
they may not apply. To determine the validity of this
explanation it will be necessary to compare each
blended product with moored data north and south of
the equator. These comparisons were not done in this
study. Second, rapidly changing atmospheric condi-
tions (in particular moisture and clouds) north and
south of the equator can have a pronounced affect on
the MCSST data and the subsequent blended products.
This reason seems unlikely, however, because both
blends depend strongly on the MCSST data in this re-
gion of the world, thus, negating much of the expected
difference between the two blends. Third, the difference
could be due to discrepancies in the CAC model. The
CAC model uses the best (“best” being defined as >5
observations per grid node) in situ grid nodes as
boundary conditions (anchor points). At locations
distant from the anchor points, the solution is propa-
gated into the interior with Poisson’s equation. The
solution to Poisson’s equation is critically dependent
on the boundary values. If the boundary conditions
are in error these errors will be propagated into the
interior region. To minimize the effects of these errors,
the CAC in situ analysis is heavily smoothed. However,
this leads to smoothing of the blended field, which
could be responsible for the spatial differences observed
between the two blends. Similar reasoning also could
explain the differences between the March blended
products.

[ Blending MCSST and in situ data: linear /bias model

It was shown (Table 3, Fig. 5) that the linear regres-
sion term is important for relating daytime MCSST
data to in situ temperature, while a bias adjustment is
sufficient to convert nighttime MCSST data to equiv-
alent in situ data. Blended maps based on MCSST data
that are scaled by these equations are not shown be-
cause the LSQRBP-CAC-blend maps usually have an
east—west temperature trend (LSQRBP warmer than
the CAC blend in the east and cooler than the CAC
blend in the west). There are several potential reasons
for this trend.

First, the eastern tropical Pacific is subject to spatially
varying amounts of atmospheric aerosols that can pro-
duce depressions in the radiometric temperature.
Smoke from slash burning in Central America has been
noted in the eastern tropical Pacific during the spring
prior to planting (Rao et al. 1989). Algorithms are
under development to correct the daytime MCSST data
for the effects of atmospheric aerosols (Rao et al. 1989;
Durkee personal communication ), but currently these
algorithms have not been merged into the operational
MCSST algorithm. It is unlikely, however, that aerosols
are responsible for the observed temperature trend be-
cause both blends depend strongly on the MCSST data
in the eastern near-equatorial Pacific.

A more likely reason for the east-west trend in the
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LSQRBP-CAC-blended-difference maps is that the
linear regression equation, which can be thought of as
a temperature dependent bias correction, is inconsistent
with the CAC blend. This point is easily illustrated by
selecting a representative MCSST from the western
edge (25°C) and a representative MCSST from the
eastern edge (20°C). The CAC blend is 26°C in the
west and 21°C in the east. Using the calibration coef-
ficients from Table 3b, the 25°C MCSST converts to
25.5°C, which is 0.5°C cooler than the CAC blend.
The 20°C blend converts to 21.4°C, which is 0.4°C
warmer than the CAC blend. These differences are
consistent with the observed trends in the difference
field.

Three reasons were given in section 5e to explain
the differences between the LSQRBP bias model blend
and the CAC blend. These reasons may also explain
some of the differences between the linear LSQRBP
and the CAC blend. However, if the differences are due
to errors in the LSQRBP, it implies that the derived
linear regression equations do not properly account
for spatial variations in the relationship between in situ
temperature and MCSST data. The actual reason for
the trend ts unknown.

6. Conclusions

1) Excluding MCSST data from 1983, which are
probably contaminated by El Chichon aerosols, the
eastern near-equatorial Pacific, monthly averaged day-
time and nighttime MCSST data have biases that are
not significantly different from zero at the 95% confi-
dence level when compared against coincident monthly
averaged daytime and nighttime moored-buoy tem-
peratures. The standard deviations for both the daytime
and nighttime data are estimated to be ~0.5°C. In-
clusion of a linear term is unnecessary in the nighttime
regression and probably is unimportant in the daytime
regression. In all cases monthly averaged MCSST data
provide a good approximation to monthly averaged, 1

m, moored-buoy temperatures along the equator in

the eastern Pacific. _

2) Eastern near-equatorial Pacific, monthly aver-
aged, CAC in situ temperatures are 0.8°C warmer than
moored-buoy temperatures. The standard deviation for
the in situ data is estimated to be ~1°C. Use of a
linear regression equation rather than a simple bias
adjustment is probably unnecessary.

3) Eastern near-equatorial Pacific, monthly aver-
aged, CAC blended temperatures are 0.7°C warmer
than the moored-buoy temperatures. The standard de-

viation for the CAC blended data is estimated to be -

~(.7°C. Use of a linear regression equation rather than
a simple bias adjustment is probably unnecessary.

4) Eastern near-equatorial Pacific, monthly aver-
aged, CAC in situ temperatures are 0.8°C warmer than
the daytime MCSST data and 1.1°C warmer than the
nighttime MCSST data. The standard deviation for
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both regressions are ~0.9°C. Use of a linear regression
equation rather than a simple bias adjustment signif-
icantly improves the fit between the daytime MCSST
data and the CAC in situ data, but is unnecessary for
the regression with the nighttime MCSST data.

5) Inclusion of the data from 1983 affected the
MCSST versus moored-buoy temperature regression
equations, but the effect was small compared to the
impact the 1983 data had on the in situ and CAC
blended regressions with the moored-temperature data:
Atmospheric aerosols are expected to affect the MCSST
data, but should not affect the in situ or CAC blended
data. Therefore, the large differences in the regression
coeflicients must be due to noise in the in situ data and
to differences in the physical processes relating tem-
perature at 1 m with temperature at 10 m, not atmo-
spheric aerosols. :

6) A small (~0.4°C), but significantly nonzero,
diurnal difference exists between the monthly averaged
daytime and nighttime MCSST data in the eastern
near-equatorial Pacific.

7) Nonstationary events such as the launch of a new
satellite or aerosol outbreaks such as the one produced
by the eruption of El Chichon may produce errors that
are not immediately identified. Although the satellite
data used in this study agreed favorably with the
moored data, the accuracy of satellite data should al-
ways be carefully evaluated before use.

8) This paper presents the results of an attempt at
blending MCSST and in situ data by converting gridded
MCSST data to equivalent in situ temperatures. Po-
tentially large temporal and spatial differences were
observed between the CAC blended product and the
LSQRBP developed here. While the LSQRBP may not
be an improvement over the CAC blend, the exercise
suggests that an upper ocean model probably should
be used to relate MCSST data and in situ temperature
rather than relying on regression equations or solutions
to Poisson’s equation. In addition, this study suggests
that the CAC blending algorithm should be carefully
examined to determine how errors in the anchor points
propagate into the interior solution.

9) The analysis presented here indicates that at least
along the equator the MCSST data compared better
with the moored data than it did with either of the two
blended products or the in situ data. Therefore, any
errors in the blended products along the equator must
be attributed to the degradation of the MCSST data
by the in situ data.

10) More work is required to properly relate
MCSST and in situ temperature. Once done, however,
the individual MCSST and in situ observations can be
blended using objective gridding techniques (Carter
and Robinson 1987). The main advantage of an ob-
jectively gridded (or least-squares optimally interpo-
lated ) product is that error estimates of the temperature
field also are produced, something that is currently un-
available for the CAC blended product.
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